Controllability for one-dimensional nonlinear wave equations with degenerate damping

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Nonlinear Wave Equations with Degenerate Damping and Source Terms

In this article we focus on the global well-posedness of the differential equation utt − ∆u+ |u|k∂j(ut) = |u|p−1u in Ω× (0, T ), where ∂j is a sub-differential of a continuous convex function j. Under some conditions on j and the parameters in the equations, we obtain several results on the existence of global solutions, uniqueness, nonexistence and propagation of regularity. Under nominal assu...

متن کامل

Null–controllability of One–dimensional Parabolic Equations

We prove the interior null–controllability of one–dimensional parabolic equations with time independent measurable coefficients.

متن کامل

Systems of Nonlinear Wave Equations with Damping and Supercritical Sources

We consider the local and global well-posedness of the coupled nonlinear wave equations u tt − ∆u + g 1 (u t) = f 1 (u, v) v tt − ∆v + g 2 (v t) = f 2 (u, v), in a bounded domain Ω ⊂ R n with a nonlinear Robin boundary condition on u and a zero boundary conditions on v. The nonlinearities f 1 (u, v) and f 2 (u, v) are with supercritical exponents representing strong sources, while g 1 (u t) and...

متن کامل

Null Controllability Results for Degenerate Parabolic Equations

The null controllability of parabolic operators in bounded domains, with both boundary or locally distributed controls, is a well-established property, see, e.g., (Bensoussan et al., 1993) and (Fattorini, 1998). Such a property brakes down, however, for degenerate parabolic operators even when degeneracy occurs on ”small” subsets of the space domain, such as subsets of the boundary. This talk w...

متن کامل

Blow up of positive initial-energy solutions for coupled nonlinear wave equations with degenerate damping and source terms

In [] Rammaha and Sakuntasathien studied the global well posedness of the solution of problem (.). Agre and Rammaha [] studied the global existence and the blow up of the solution of problem (.) for k = l = θ = = , and also Alves et al. [] investigated the existence, uniform decay rates and blow up of the solution to systems. After that, the blow up result was improved by Houari []. Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systems & Control Letters

سال: 2017

ISSN: 0167-6911

DOI: 10.1016/j.sysconle.2016.12.007